АНТИБІОПЛІВКОВА АКТИВНІСТЬ МЕРОПЕНЕМУ ЩОДО PSEUDOMONAS AERUGINOSA
PDF

Ключові слова

антимікробні препарати
меропенем
біоплівки
P. aeruginosa
матрикс

Як цитувати

Гринчук, Н., Бойко, І., & Вринчану, Н. (2021). АНТИБІОПЛІВКОВА АКТИВНІСТЬ МЕРОПЕНЕМУ ЩОДО PSEUDOMONAS AERUGINOSA. Молодий вчений, 6 (94), 114-119. https://doi.org/10.32839/2304-5809/2021-6-94-25

Анотація

Не дивлячись на багаточисельні дослідження біоплівок, їх структури, фізіологічних особливостей, проблема терапії пацієнтів з біоплівковими інфекціями залишається актуальною. Обмежена кількість препаратів з антибіоплівковою дією спонукає до пошуку нових сполук з виразною активністю та потребує оцінки специфічної активності впроваджених в клінічну практику антимікробних засобів. Дослідження показали, що представник карбапенемів меропенем порушує плівкоутворення P. aeruginosa, обумовлює деструкцію сформованих біоплівок, що підтверджується зменшенням біомаси та кількості життєздатних клітин. За дії меропенему у концентрації 2,0 МІК спостерігається зменшення вмісту загальних полісахаридів, Pel-полісахариду та білка у матриксі біоплівок P. aeruginosa.

https://doi.org/10.32839/2304-5809/2021-6-94-25
PDF

Посилання

Marvig R.L., Sommer L.M., Molin S., Johansen H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa with in patients with cystic fibrosis. Nature Genetics.2014.V.47,№1,Р. 57-64. https://doi.org/10.1038/ng.3148.

Litwin A., Rojek S., Gozdzik W., Duszynska W. Pseudomonas aeruginosa device associated – healthcare associated infections and its multidrug resistance at intensive care unit of University Hospital: polish, 8.5-year, prospective, single-centre study. BMC Infectious Diseases. 2021.V.21,№1:180. https://doi.org/10.1186/s12879021058835.

Lorenz A., Preuße M., Bruchmann S. [et al.]. Importance off lagella in acuteand chronic Pseudomonas aeruginosa infections. Environmental Microbiology. 2019.V.21. № 3. Р. 883-897. https://doi.org/10.1111/1462-2920.14468.

Vestby L.K, Grønseth T., Simm R., Nesse L.L. Bacterial Biofilm and its Rolein the Pathogenes is of Disease. Antibiotics (Basel). 2020. V. 9. № 2:59. https://doi.org/10.3390/antibiotics9020059.

Maurice N.M., Bedi B., Sadikot R.T. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implication sinL ung Infections. Am J Respir Cell Mol Biol. 2018. V. 58.№ 4. Р. 428-439. https://doi.org/10.1165/rcmb.20170321TR.

Alam F., Catlow D., Di Maio A. [et al.]. Candida albicans enhances meropenem tolerance of Pseudomonas aeruginosa in a dual-species biofilm. Journal of Antimicrobial Chemotherapy. 2020. V. 75. № 4, Р. 925-935. https://doi.org/10.1093/jac/dkz514.

Fernandez R., Amador P., Prudeˆncio C. b-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol. 2013. V. 24. № 1. P. 7–17. https://doi.org/10.1097/MRM.0b013e3283587727.

Страчунский Л.С., Белоусов Ю.Б., Козлов С.Н. Практическое руководство по антиинфекционной химиотерапии. Смоленск : МакМаХ, 2007. Т. 86. № 1, 464 с.

Papp-Wallace K.M., Endimiani A., Taracila M.A. [et al.]. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011.V. 55. № 11. Р. 4943–4960. https://doi.org/10.1128/AAC.00296-11.

Haagensen J.A., Verotta D., Huang L. [et al.]. New in vitro model to study the effect of human simulated antibiotic concentrations on bacterial biofilms. Antimicrob Agents Chemother. 2015. V. 59. № 7. P. 4074–4081. https://doi.org/10.1128/AAC.05037-14.

Ciofu О., Tolker-Nielsen Т. Тolerance resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents  how P. aeruginosa can Escape antibiotics. Front Microbiol. 2019. 10:913. URL: https://doi.org/10.3389/fmicb.2019.00913.

Tolker-Nielsen T. Biofilm Development. Microbiol Spectr. 2015. V 3, № 2: MB-0001-2014. https://doi.org/10.1128/microbiolspec.MB-0001-2014.

Colvin K.M., Gordon V.D., Murakami K. [et al.]. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLOS Pathogens. 2011. V. 7, № 1: e1001264. https://doi.org/10.1371/journal.ppat.1001264

Дудікова Д.М., Гринчук Н.І., Суворова З.С. [та ін.]. Вплив 4-(1-адамантил)-фенокси-3-(N-бензил, N-диметиламіно)-2-пропанол хлориду на компоненти матриксу біоплівки Pseudomonas aeruginosa. The scientific heritage. 2018. № 25. Р. 3-9.

O'Toole G., Kaplan H. B., Kolter R. Biofilm formation as microbial development. Annu Rev. Microbiol. 2000. V. 54. №1. Р. 49-79. https://doi.org/10.1146/annurev.micro.54.1.49

Tote K., Berghe D., Maes L. A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilm. Lettersin Applied Microbiology. 2008. V.46.№ 2. Р. 249254. https://doi.org/10.1111/j.1472-765X.2007.02298.x.

Kayumov A., Nureeva A., Trizna E. [et al.]. New derivatives of pyridoxine exhibit high antibacterial activity against biofilm – embedded Staphylococcus cells. Bio Med Research Internat. 2015. 2015:890968. URL: https://www.hindawi.com/journals/bmri/2015/890968.

Bogachev M.I., Volkov V.Y., Markelov O.A. [et al.]. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS One. 2018. V. 13, № 5: e0193267. https://doi.org/10.1371/journal.pone.0193267.

Chiba A., Sugimoto S., Sato F. [et al.]. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb. Biotechnol. 2015. V. 8. № 3. Р. 392403. https://doi.org/10.1111/17517915.12155.

Lowry O.H., Rosebrough N. J., Farr A.L., Randall R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951. V. 193. №1. Р. 265275. https://doi.org/10.1016/S0021-9258(19)52451-6.

Dubois M., Gilles K., Hamilton J. [et al.]. Colorimetric method for determination of sugar sаndrelated substances. Anal. Chem. 1956. V. 28, № 3. Р. 350-356. https://doi.org/10.1021/ac60111a017.

Spiers A.J., Bohannon J., Gehrig S.M., Rainey P.B. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol. 2003. V. 50, № 1. Р. 1527. https://doi.org/10.1046/j.1365-2958.2003.03670.x.

Hrynchuk N., Bukhtiarova T., Dudikova D., Vrynchanu N. Anti-adhesion properties of aminopropanol derivative with N-alkylaryl radical KVM-194 against Pseudomonas aeruginosa. One Health & Risk Management. 2021. V. 2. № 1. Р. 34-41. https://doi.org/10.38045/ohrm.2021.1.05.

Marvig R.L., Sommer L.M., Molin S., Johansen H. K. (2014) Convergent evolution and adaptation of Pseudomonas aeruginosa with in patients with cystic fibrosis. Nature Genetics, vol. 47, no. 1, pp. 57-64. https://doi.org/10.1038/ng.3148.

Litwin A., Rojek S., Gozdzik W., Duszynska W. (2021) Pseudomonas aeruginosa device associated – healthcare associated infections and its multidrug resistance at intensive care unit of University Hospital: polish, 8.5-year, prospective, single-centre study. BMC Infectious Diseases, vol. 21, no. 1. https://10.1186/s12879021058835.

Lorenz A., Preuße M., Bruchmann S. [et al.]. (2019) Importance off lagella in acuteand chronic Pseudomonas aeruginosa infections. Environmental Microbiology, vol. 21, no 3, pp. 883-897. https://doi.org/10.1111/14622920.14468.

Vestby LK, Grønseth T, Simm R, Nesse LL. (2020) Bacterial Biofilm and its Rolein the Pathogenes is of Disease. Antibiotics (Basel), vol.9,no.2:59. https://doi.org/10.3390/antibiotics9020059.

Maurice NM, Bedi B, Sadikot RT. (2018) Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implication sinL ung Infections. Am J Respir Cell Mol Biol, vol. 58, no 4, pp.428-439. https://doi.org/10.1165/rcmb.20170321TR.

Alam F., Catlow D., Di Maio A. [et al.]. (2020) Candida albicans enhances meropenem tolerance of Pseudomonas aeruginosa in a dual-species biofilm. Journal of Antimicrobial Chemotherapy, vol. 75, no 4, pp. 925–935. https://doi.org/10.1093/JAC/DKZ514.

Fernandez R, Amador P, Prudeˆncio C. (2013) b-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol, vol. 24, no 1, pp. 7–17. https://doi.org/10.1097/MRM.0b013e3283587727.

Strachunskyi L.S., Belousov Yu.B., Kozlov S.N. (2007) Praktycheskoe rukovodstvo po antyynfektsyonnoi khymyoterapyy [Practical guide to anti-infectious chemotherapy]. Smolensk: MakMaKh. (in Russian)

Papp-Wallace K.M., Endimiani A., Taracila M.A. [et al.] (2011). Carbapenems: past, present, and future. Antimicrob Agents Chemother, vol. 55, no 11, pp. 4943–4960. https://doi.org/10.1128/AAC.00296-11.

Haagensen J.A., Verotta D., Huang L. [et al.]. (2015) New in vitro model to study the effect of human simulated antibiotic concentrations on bacterial biofilms. Antimicrob Agents Chemother, vol. 59, no 7, pp. 4074–4081. https://doi.org/10.1128/AAC.05037-14.

Ciofu О., Tolker-Nielsen Т. Тolerance. (2019) Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents  How P. aeruginosa can Escape antibiotics. Front Microbiol. 10:913. URL: https://doi.org/10.3389/fmicb.2019.00913.

Tolker-Nielsen T. Biofilm Development. (2015) Microbiol Spectr. vol. 3, no 2: MB-0001-2014. https://doi.org/10.1128/microbiolspec.MB-0001-2014.

Colvin K.M., Gordon V.D., Murakami K. [et al.]. (2011) The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLOS Pathogens, vol. 7, no 1. URL: https://doi.org/10.1371/journal.ppat.1001264

Dudikova D.M., Hrynchuk N.I., Suvorova Z.S., Nedashkivska V.V., Vrynchanu N.O. (2018) Vplyv 4-(1-adamantyl)-fenoksy-3-(N-benzyl N-dymetylamino)-2-propanol khlorydu na komponenty matryksu bioplivky [Impact of 4-(1-adamantyl)-phenoxy-3-(N-benzyl, N-dimethylamino)-2-propanol chloride on components of the Pseudomonas aeruginosa biofilm matrix]. The scientific heritage, no. 25, pp. 3–9.

O'Toole G., Kaplan H. B., Kolter R. (2000) Biofilm formation as microbial development. Annu Rev. Microbiol, vol. 54. no. 1, pp. 49-79. https://doi.org/10.1146/annurev.micro.54.1.49.

Tote K., Berghe D., Maes L. (2008) A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilm. Lettersin Applied Microbiology, vol.46, no. 2, pp. 249-254. https://doi.org/10.1111/j.1472-765X.2007.02298.x

Kayumov A., Nureeva A., Trizna E. [et al.] (2015) New derivatives of pyridoxine exhibit high antibacterial activity against biofilm – embedded Staphylococcus cells. Bio Med Research Internat, 2015:890968. URL: https://www.hindawi.com/journals/bmri/2015/890968.

Bogachev M.I., Volkov V.Y., Markelov O.A. [et al.]. (2018) Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS One, vol. 13, № 5. e0193267. https://doi.org/10.1371/journal.pone.0193267.

Chiba A., Sugimoto S., Sato F. [et al.]. (2015) A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb. Biotechnol. vol. 8, no. 3, pp. 392-403. https://doi.org/10.1111/17517915.12155.

Lowry O.H., Rosebrough N. J., Farr A.L., R.J. Randall R.J. (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem, vol. 193, no.1, pp. 265275. https://doi.org/10.1016/S0021-9258(19)52451-6.

Dubois M., Gilles K., Hamilton J. [et al.]. (1956) Colorimetric method for determination of sugar sаndrelated substances. lton Anal. Chem, vol. 28, no. 3, pp. 350-356. https://doi.org/10.1021/ac60111a017.

Spiers A.J., Bohannon J., Gehrig S.M., Rainey P.B. (2003) Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol, vol. 50, no. 1, pp. 15–27. https://doi.org/10.1046/j.1365-2958.2003.03670.x.

Hrynchuk N., Bukhtiarova T., Dudikova D., Vrynchanu N. (2021) Anti-adhesion properties of aminopropanol derivative with N-alkylaryl radical KVM-194 against Pseudomonas aeruginosa. One Health & Risk Management, vol. 2, no. 1, pp. 34–41. https://doi.org/10.38045/ohrm.2021.1.05.